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Whittaker's cardinal function is used to derive various types of extremely
accurate approximation procedures, along with error bounds, for interpolating,
integrating, and evaluating the Fourier (over (- 00, 00) only) and the Hilbert
(over (- 00, ex;), (0, 00), and (-1, 1) transforms of ftffictions. Formulas over
(- 00, GC) are obtained directly; in practice these are especially suitable for
functions that are analytic in the strip 9/ = {x + iy: I y [ <: d}, d> 0, and
which go to zero rapidly as x --->- ± ,x). We obtain analogous formulas and error
bounds for approximations over contours in the complex plane, by use of a
conformal map transformation taking 9/ onto some other domain 9. Some of
the new results are rather surprising. For example, ifJis analytic and bounded in
the unit disc j(±1) oF 0, and if F is defined by F(x) = (1 - x')~ j(x), where
'" > 0, then taking h = 7T/(2a.:N)1/2, yields

F(x) _ f. F(tanh(kh/2)) sin {(7T/h)[log ((1 + x)/(1 - x)) - kh]} (1.7)
k~-N ' Cr.lh) [log ((1 + x)/(1 - x)) - kh]

as N --->- 00,

for all x E [-1, 1]. This result should be compared with that of interpolating F
over [-1, 1] by a polynomial P2N of degree 2N for which [Timan, A. F. "Theory
of Approximation Functions of a Real Variable," Fitzmatgiz, Moscow, 1960]

maXeXE[_l,l]) IF(x) - P2N(X) I ;> cIN'"

for all N> 0, where c is a positive constant independent of N.

1. INTRODUCTION AND SUMMARY

Let f be a given function defined on the real line R. Whittaker's cardinal
function, C(f, h, x), is defined by

C(f, h, x) = L f(kh) sinc [(x - kh)jh]
k=-O)

(1.1)
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WHITTAKER'S CARDINAL FUNCTION

whenever this series converges. In (1.1), h is a positive constant, and

sine x = sin 7TX!7TX.
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(1.2)

The function C(f, h, .) was discovered by E. T. Whittaker [17] and studied
extensively by J. M. Whittaker (see, e.g., [18]).

Let us set

N

CM,N(f, h, x) = L f(kh) sine [(x - kil)/h]
k~-M

N

TM,N(f, h) = h L f(kh).
I.~-M

(1.3)

(1.4)

The approximation TM,N is obtained by integrating CM,N over R. In 1949
Goodwin [4] discovered the incredible accuracy of the approximation TM.N

of the integral offover R, for those functionsfwhich are analytic in the strip
!!la' = {x --;-- iy: I y : :(; d} and which converge rapidly to zero as x ->- ±ce.
As may be expected, CM,N(f, h, .) is also a very accurate approximation of
such a function f on R.

Many of the known properties of C(f, h, .) are described in [8]. In the
present paper we briefly recall some of these, and "ve derive some others.
We show, for example that the Hilbert transform of eM.NCt: h, .) over R is
a very accurate approximation of the Hilbert transform of an analytic
function f of the type referred to above.

In addition, we derive some new analogous approximation formulas by
me of conformal transformations of the region £1a' onto other regions fi'.
For example, by taking fit = {z = x + iy: I =I < I} 'Ne obtain formulas
for interpolating, integrating, and evaluating the Hilbert transform of
functions over (-1, 1); by taking fit = {x + iy: x > O}, we get analogous
formulas over (0, 00).

We also obtain accurate error bounds, which enable us to identify classes
of functions for which the formulas are very accurate. For example, iff is
analytic in {x + iy: x > OJ, if

rCC IF(c + iv) 'I
H}~ Lx c + i): dy < ce, rT

!2 i f(Reie) I d() ->- 0
.. --;r/2,

as R ->- :::JJ

(1.5)

and if If(x)! :(;; Cx"/(l + x2)'" on [0, ce], where C and CI: are positive
constants, then by taking h = 7T/(2rxN)1/2,

fex) - l'~l../(ekh) sine [ log x;; kh ] = O(Nl!2r "(""2)1/2N1/2) (1.6)
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as N - 00, uniformly for x E [0, 00]. Similarly, if f is analytic in {x + iy:
x > O}, iff satisfies

lim- L: I fCc + (v) [dy < 00, J
7f/2

[f(Reie)1 dB - 0
-7f/2

as R- 00,

(1.7)

and if [f(x)[ :(; Cx"-lf(l + X2)"-1/2, for all x E (0, (0), where C and ex are
positive constants, then by taking h = 7Tf(exN)1/2,

fro F(t) N F(xekh+h / 2)
P.V. -- dt - It I - . = O(e-7f ,,1/2N l/2)

o t - X k~-N 1 - e-kh- h / 2 (1.8)

as N - 00, for every fixed x in (0, (0).
Each of the above estimates is derived by first obtaining a Davis-type

error bound [1, p. 345] and then minimizing this bound by expressing the
step-size It as a function of N.

2. PROPERTIES OF C(f, h, x)

Let us briefly recall some known properties of CCf, h, x) (see [8]).

DEFINITION 2.1. Let B(h) denote the family of all functions fE L2(R)
such thatfis an entire function of order ~ 1 and type ~ 7Tfh, i.e.,

[f(z)[ :(; Ce,,!zl/h

for all complex z where C is a constant, and

Ilf[l~ = I
R

[f(t)1 2 dt < 00.

THEOREM 2.1 [8]. /ffE B(h), then

fez) = C(f, h, z)

for all complex z.

THEOREM 2.2. /ffE B(h), then

~!~ fh f(t) dt - h f. f(kh) = O.
-nn k=-n

(2.1)

(2.2)

(2.3)

(2.4)
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Proof This result follows directly from (2.3) upon integration of the
cardinal series, and using the identity

r sinc(;'(jh) dx = h.
.JR

The relations

r . ~ (x - mh 'I' (X - nh )' d -'sm" I 1 smc I x - II
• R I!, 1

=0

where m and n are integers, lead to

THEOREM 2.3. IffE B(h), then

r If(t)!2 dt = h I I j(kh)!2.
JR k=-oc

The sequence

{(ljIz1/2) sinc((x - kh)jh)} ~~-co

is therefore a complete orthonormal sequence in B(h).

Let us next define the Hilbert transform HI, by

(Hf)(x) = P.,:,. J jet) dt
71'1 R t - x

if m = n

if m * n

(1.5)

(2.6)

(2.7)

(2.8)

(2.9)

where f E LP(R), P ;:? 1, and where P.V. denotes the principal value. Let us
assume thatfis such that there exists a function F in Lq(R)(r~+ q-l = 1),
such that

f(x) = r eiretF(t) dt,
oR

and define Pf by

(Pf)(x) = r"" eixtF(t) dt.
• 0

Then (see, e.g., [12))

Hf= 2Pf-f

The identity

[
X - kh ] J"lh ( h' . . -sinc = -I e-'khleut dt

h -7flh 271'.

(2.10)

(2.11)

(2.12)

(2.13)
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(. [. - kh]) _ (h/(27T))[eirr(X-khl /h - 1)
P \SIDC h (x) - i(x - kh) , (2.14)

H ( . [. - kh ]) () i7T ( kl ) . • [ x - kh ]SIDe h x = 2h x - 1 sIDe~ 2h .

By collecting the above results, we get

THEOREM 2.4. Let f E B(h). Then

(2.15)

f(x) = CCf, h, x); (2.16)

J eixtf(t) dt = h I: f(kh) eikhx, I x I < 7T/h
R k~-oo

= 0, I x I > 7T/h;
(2.17)

h 00 [ eirr(x-kh) Ih - 1 ]
(Pf)(x) = 27Ti 2~oo f(kh) x - kh ;

(Hf)(x) = ~: I f(kh)(x - kh) sine2
[ x ---;h

kh
],

k'~-oo

where Pfand Hf are defined in (2.11) and (2.9), respectively.

The explicit form (2.19) was derived in [13].

3. INTERPOLATION OF ANALYTIC FUNCTIONS

(2.18)

(2.19)

DEFINITION 3.1. Let BdP, where d> 0, p ~ 1 denote the family of all
functionsfthat are analytic in

such that

and such that

rI f(x + iy)1 dy -->- °
-d

as x -->- ± 00,

(3.1)

(3.2)

(3.3)
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THEOREM 3.2. Let fE BdP, P = 1 or 2, and define E(f) by

E(f)(X) = f(x) - CCf, h, x)

where -00 :s;; x ~ (f). Then1
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(3.4)

/ sin(7Tx/h) f \ f(t - id~)

E~f)(X) = 27Ti oR i(t- x - id)sin(7T(t - id)/h)

f(t + id-) i At (3.5)
(t - x + id) sin(7T(t + id)/h)\ CA •

.kloreover, iffE Bi, then

(f)
' N(f, 1, E2'/)

Ii E. Iloo:S;; 27Td sinh(7Td/h) ,

~vhile iffE El, then

(f)11 2( d)1/211 (")'1 N(f, 2. q/)
[I E 2' 7T E j loc:S;; sinh(;d/h)

(3.6)

(3.7)

Proof We shall first get (3.5) by proceeding as in [5,6,8]. Let rand s
be real, and let a contour L n be defined by L n = {r + is: I r I :s;; (n + 1/2)h
and s = ±d, r = ±(n + 1/2)h and I s I :s;; d}, where n is a positive integer.
Then L n encloses the points x = 0, ±h, ±2h,... , ±.nh. Hence we deduce from
Cauchy's theorem, that if -nh :s;; x :s;; nh,

f' ' _ In r(k)' , - k /1)] - l' sin(m;;/h) J' f(cz)dz
J (x) k~-'" h smc[(x h) 1 - c~~ 27Ti L" (z - X) sin(7Tz/h) .

(3.8)
If u and v are real, the relations

I sin(u + it') [ = [sinh2 v + sin2 U]1;2 ?'o sinh It' i (3.9)

show that on the vertical segments of L n , I sin[7T«n + 1/2)h + is)/h][2 =
sinh2(7Ts/h) + 1 ?'o 1; hence letting n ->- 00 in (3.8) and using (3.2) we get
(3.5). Notice that by letting x depend upon n, -11 :s;; X :s;; n, we may let
x --+ ±os along with ±n.

In order to get (3.6), we proceed as in [5, 6, 8]. We simply use (3.9), as
well as I t _. x ± id I ?'o din (3.5).

We next proceed as in [12] to get (3.7). Consider the integral

I " - f f(t - id-) dt
(x) - . R (t - X - id) sin[7T(t - id)/h] .

1 Here and elsewhere fR F(t ± id-) dt ~ Iimu~d- fR F(t ± iy) dt.

(3.10)



228 FRANK STENGER

Schwarz's inequality and (3.9) now yield

I
Ij(t - id-) Idt

I l(x) I ~ R r(t - X)2 + d2]l/2 sinh(-;rdjh)

1 (I dt )1/2(I )1/2
,:s:; sinh(17djh) R (t - x)2 + d2 . R Ij(t - id-)1

2
dt

(17jd)1/2 . _9 1/2

= sinh(17djh) (t I j(t - ld-)I" dt) .

(3.11)

A similar treatment of the second integral in (3.5) leads to the II E(f)II", bound
in (3.7).

If rp E VCR), the function (f> defined by

(f>(x) = r eixtrp(t) dt
'R

is also in VCR). Moreover, by Parseval's theorem,

117 t I (f>(X)[2 dx = J
R

I rp(t)1 2 dt.

Furthermore, if (f>+(x + iy) is defined for y > 0 by

(f>+(x + iy) = f'" eiXfe-yfrp(t) dt
o

= 2~i t t ~~~)~t iy ,

then by (3.13)

(3.12)

(3.13)

(3.14)

r I (f>+(x + iy)12dx = 217r e-2yt I rp(t)12 dt
'R 0

,:s:; 217 t I rp(t)[2dt (3.15)

= r I (f>(x)1 2 dx.
oR

By applying these results to (3.10), we get

9 2 f I j(t - id-) 1
2

II 1112 ~ (217) R sin[17(t _ id)jh] dt

~ sin~(2~jh) t Ij(t - id-)1
2

dt.

(3.16)



WHITTAKER'S CARDINAL HINCTION 229

A similar treatment of the second integral in (3.5) leads to the II E(f)112 bound
in (3.7).

This completes the proof of Theorem 3.2.

4. APPRoxIMATE INTEGRATION OF ANALYTIC FUNCTIONS

Let f E Bi. If we integrate both sides of (3.4), we get

YJ(f) = f E(f)(X) dx = J f(x) dx - iz f f(kh). (4.1)
R R ,~=-::.o

We substitute (3.5) into (4.1), interchange the order of integration, and use
the identities

to get

_1_ f sin(7Txlh) dx = ~ e-7T'i;"e±itrr!h

27Ti R t - x ± id 2i
(4.2)

~.f) __ e-7Td /" f (f(t + id-) e it"/,, _ f(t - id-) ritr./" I
7}\} I ,dt (4.3)

~ 2i"R / sin[7T(t + id)/h] sin[7T(t - id)lh] \ .

Taking the absolute value, we thus arrive at

THEOREM 4.1. Iff E Bi, then

e-rrd :h

!1](f)! :s;; 2 sinh(7Tdlh) Ncr, 1, 2 a')· (4.4)

where 1](f) is defined as in (4.1), and NO as in (3.3).
The proof of (4.4) is similar to that in [5]. The bound (4.4) was obtained by

a different procedure in [6, 8].

5. ApPROXIJ\IATION OF FOURIER AND HILBERT TRANSFORMS

We make the approximation

r e;x'i(t) dt ~ h I f(kh) eikhx,
• R k~-oo

~o,

I x i :s;; "Ih

I x I > nih
(5.1)

for the Fourier transform of f, where fE Bi. For each i x I :s;; nih, the
function g E Be?, where get) = eiXIf(t). By applying Theorem 4.1, we get
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THEOREM 5.1. IffE Ri, then for all x E [-7T/h, 7T/h] ,

If eixtj(t) dt - h I j(kh) ei7,nx I ~ NC[. 1, !lild') . (5.2)
R k~-JO 2 smh(7Td/h)

Let us next obtain two Hilbert transform approximations. We assume that
fE RdP, p = 1 or 2. If U E R then it is readily verified using (2.10)-(2.12),
that

P.v. f sin(7Tx/h) dx . i 1 [ +"(t±"d) /h (/h)])-- = I ' e-' ,,, - cos TTU \
7Ti R (t - x ± id)(x - u) I t ± id - U \.

(5.3)

Let Hfbe defined as in (2.9). Taking the Hilbert transform of each side of (3.5)
and using (2.15) and (5.3), we get

_1_ f \ j(t - id-) [e-i(l-id),,/h - cos(7Tu/h) ]
27T R I t - u - id sin[(t - id) 7T/h]

_ j(t + id-) [ei(!+id)rr/h - cos(7Tu/h) ]1
t - U + id sin[(t - id) 7l'/h] \ dt

= (Hf)(x) - ~: i: j(kh)(x - kh) sinc2
[ x ;h

kh J. (5.4)
k=-JO

By proceeding as in the proof of Theorem 3.2 and using the inequalities
I t - u ± id I ? d, and

I
e±i(t±id111/h - cos(7Tu/h) I e-rrd /h + i _ e-rrd /(2h)

sin[(t ± id) 7T/h] ~ sinh(7Td/h) - sinh(7Td/(2h))

we deduce the results of the following theorem, which we believe to be new.

THEOREM 5.2. Let 8(f) be defined by

8(f)(x) = (Hf)(x) - (HC(f, h, ·))(x), (5.5)

where Hfis defined as in (2.9), and HC(f, h, .) is explicitly expressed in (2.19).
IffERi, then

e-"d/(2h)N(f, 1 !liJ ')
2(7Td)1/2 [[ 8f[["" , [I 8fl12 ~ sinh(7Td/(2h)) d (5.6)

while iffE Ri, then

where N(f, p, !lild') is defined in (3.3).
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We shall derive another approximation of Hf for the case when f E Ba"",

p = 1 or 2, by proceeding as in [5]. An alternate expression for Hfis

("Hf)( -) = _1 /" l(x -+- t) - l(x - t) d = J' ')'.\ 2' t g(t at. , . 7Tl •R t . R

where

(
' ) __1_ \fIX + t + h12) ~ l(x - t - h12) I

g ~t - 2i7T I t + hl2 (.

and where g E Bi. Setting

7)(g) = I get) dt - h f g(kh)
R k~-~

and using (4.3), we get

(5.8)

(5.9)

(5.10)

e-"d/h J \get - id-) e-it,,/n get + id-) e it",'" i
7J( g) = -2- j . ( d) F] - . [ 'd)(] \ dt. (5.11)- i R \ sm[7T t - i /1 Sill 7T(t + 1 /1

By proceeding as in the proof Theorem 3.2, Eq. (3.6), we arrive at

THEOREM 5.3. Let fE B"P, P = 1,2. The error 7)( g) defined in (5.10) is
also expressed as follows:

( ) = (H'+)( ) _ J..- ~ fIx + kh + h12)
7) g J X • L 1,- + 1 (2 .7Tl k'~-ao Ie L!

Let N(f, p, ga') be defined as in (3.3),

(a) IffE Bi, then
e-"d/n

117)(g)llao :(; 27Td sinh(7Tdlh) N(f, 1, E»d')·

e-"d/n
I: 7)(g)lloc :(; 2(7Td)l!2 sinh(7Tdlh) N(f, 2, Pi/).

6. FORl\ffiLAS OBTAINED BY CONFORMAL MAPPING

Let cp be a conformal map of a simply connected domain E» onto

E»' = {x + iy: Iy I < 7T12}.

(5.12)

(5.13)

(5.14)

(6.1)

Let us denote the boundary of E» by C, let a and b =F a be points of C, and
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let us assume that cp(a) = - 00, cp(b) = 00. We denote the inverse function,
cp-l by f, and set y = f(( - 00, (0».

Let B(g;) denote the family of all functions F that are analytic in fiJ, such
that

and such that

N(F, fiJ) = lim inf J IF(z) dz I < 00
c'~,c C'C!0 c'

(6.2)

where

r I F(z) dz [ --+ °
"</r(u+L)

as u--+ ±oo, (6.3)

L = {iy: Iy I ,,:::; 7Tj2}.

Let us define f by

few) = F(f(w» f'(w).

(6.4)

(6.5)

By recalling the definition of N(f, 1, fiJ') in Eq. (3.3), it then follows that

N(F, fiJ) = N(f, 1, fiJ'). (6.6)

THEOREM 6.1. Let FE B(fiJ). Let z/,; be defined by z/,; = f(kh), k = 0,
±l, ±2,....

(a) If z E Y = f(( - 00, (0», then

"(F)(7) = F(z) _ ~ F(z/,;). [ cp(z) - kh ]
a - - '(7) L. '(_ ) SInC Icp - /,;~-w cp ;L." 1

is bounded as follows:

N(F, fiJ)
II 8(F)llw ,,:::; 7T2 sinh(7T2j2h» ,

where N(F, fiJ) is defined in (6.2).

(b) Let w(F) be defined by

r
b ~ F(z•.)

w(F) - 'u F(z) dz - h /,;~w cp'(z,,) .

Then

e-"'/(2h)

[ w(F) I ,,:::; 2 sinh(7T2j(2h» N(F, fiJ).

(6.7)

(6.8)

(6.9)

(6.10)

Part (b) of Theorem 6.1 was proved by a different procedure in [14].
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Part (a) of Theorem 6.1 is not in the most suitable form for purposse of
interpolating F on y. However, upon replacing F by q/F, we immediately
get the following result, which we believe to be new.

THEORBf 6.2. Let G be defined by

G(z) = F(z) ep'(:::),

and let G E B(g). Thenfol' all z EO y,

: W • rep(z)-kh]i N(G,El)
I F(z) - I F(z/,;) smc ! I ~ 2 . h( 21(,,7)): "~-oc - 1 7T sIn 7T / £.[1

where zl. = 1f;(kh), and N(G, g) is defined as N(F, g) was, in (6.2).

Let us next derive a formula for approximating

(HF)(z) == P.~. fb F(t)_ dt
7T1 "t - '"

where the integration is along y = 1f;((- 00, co)), and z EO y. Setting

(6.11)

(6.12)

(6.13)

we get

t = 1f;(u), z = if;(w) (6.14)

(HF)(7) = P.V. f F(1f;(u)) 1f;'(u) du
- 7.i. R 1f;(u) - 1f;(1I')

= _1_ J' \F(1f;(u + 11')) 1f;'(u + 11')
27Ti R j 1f;(u + w) - 1f;(w)

Applying Theorem 4.1, we get

F(lj;(w - u)) lj;'(w - u) I
- du

lj;(lI' - u) - lj;(il') \ .
(6.15)

THEOREM 6.3. Let Z E y, and let (HF)(z) be defined in (6.13). If G E B(E?),
where GCt) = F(t)/(t - z),

I(HF)(7) _!!..... I F(lj;(ep(z) + kh + 1112) lj;'(ep(z) + kh + h12) I
I - 7Ti 7,=-", lj;(ep(z) + kh + h12) - Z i

e-,,2/(2h)

~ 27T sinh(7T2/(2h)) N(G, P),

where N(G, E?) is defined as in (6.2).

This result is believed to be new.

(6.16)
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7. ApPLICATIONS OF CONFORMAL MAPPINGS

Let us begin with approximations over (-1, 1). To this end, in the notation
of Section 6, let F be analytic in

fir = {z: I z I < I},

and take a = -1, b = 1. Then rp defined by

(7.1)

w = rp(z) = Iog((1 + z)j(1 - z» (~z = ifl(w) = tanh(wj2» (7.2)

maps fir conformally onto fir' (Eq. (6.1» such that rp(-1) = -00, rp(l) = 00.

Paraphrasing Theorem 6.1, we get

COROLLARY 7.1. Let F be analytic in fir (Eq. (7.1» and let

N(F, fir) = !~T-:- f'IT IF(reiO)[ de < 00
o

Then2

(7.3)

If 1 W 2ekh
(' ekh

- 1 )I e-7T2
(2hl

-1 F(z) dz - h k~W (1 + ekh)2 F ekh + 1 :::;; 2 sinh(7T2j(2h» N(F, fir).

(7.4)

This result was obtained in [14]; related results were obtained indepen­
dently in [11, 12, 15].

Paraphrasing Theorem 6.2, we get

COROLLARY 7.2. Let F be analytic in fir (Eq. (7.1), let rp be defined as in
(7.2), G by

G(z) = 2F(z)j(1 - Z2)

and let

N(G, fir) = lim f27T I G(reiO)j de < 00.
r....,.l- 0

Then for all x E [-1, 1], xl.; = tanh(khj2) ,

I ~ . [rp(x) - kh] I N(G, fir)
F(x) - k!:'-W F(x/,;) SlUe h :::;; 7T2 sinh(7T2j(2h» .

The approximation (7.7) is believed to be new.

(7.5)

(7.6)

(7.7)

2 It is readily seen that if (7.3) is satisfied then the corresponding integrals analogous to
(6.3) are also satisfied.
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Similarly, paraphrasing Theorem 6.3, we get the following explicit result,
which we believe to be new.

COROLLARY 7.3. Let F be analytic in q CEq. (7.1), let G" be defined by

G ( ) = F(t)
" t l- X

where x E (-I, 1), and let

N(G", , I7) c== lim C" I GxCrei9)! dO < w,
r--)l- "'0

then

IP.V. fl F(t) d h I 1 - X",2 F (' x +- x" ')1
I ----:;;.r- -1 t - x t - 27Ti 7,~-ro X.t(1 + xx,) 1 + xx'"

___ e-'1l'!(2h)

~ 27T sinh(7T2/(2h)) N(G" , !?),

where x" = tanh(kh/2 + h/4).

(7.8)

(7.9)

(7.10)

Let us next derive analogous approximation formulas over the interval
(0, CfJ). For this case, we assume that F is analytic in

Ii' = {z: Re z > O},

and we take a = 0, b = 00. Then rp and f are given by

(7.11)

w = rp(z) = log z,

Paraphrasing Theorem 6.1, we get

z = if;(w) = eW
• (7.11)

COROLLARY 7.4. Let F be analytic in Ii' (Eq. (7.11)), let

N(F, EZ) = lim roc IF(c + iy)] dy < oc
C--7O+ "--00

(7.13)

and let

Then

f"!2 IF(Rei9) I R dO ~°
"--7'(/2

as R ~ CfJ. (7.14)

(7.15)
I ,00 oc I e-"Z!(2h)i.1

0
F(x) dx - h k~oo ekIlF(e

kh
) ~ 2 sinh(7T2/(2h)) N(F, EZ).

Results related to (7.10) were also obtained in [10, 11, 12, 14, 15].
Next, Theorem 6.2 yields an explicit interpolation formula over [0, w],

which we believe to be new.
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COROLLARY 7.5. Let F be analytic in!!d (Eq. (7.11», let G be defined by

G(z) = F(z)/z,

let

N(G,!0) = lim J'oo I G(c + iy)[ dy < 00,
C-7O+ -e.G

and let

" (2f !F(Rei8)1 dB -+ 0
-7T/2

as R -+ 00. Then for all x EO [0, 00],

(7.16)

(7.17)

(7.18)

ID( .) ~ 1':'( kh)' [ log x - kh]1 ~ NCG, P) (7 19)
£' x - k!::-OO £' e Sine h ~ 7T2sinh(7T2/(2h»' ."

We next apply Theorem 6.3, to get the following result, which we believe
to be new.

COROLLARY 7.6. Let F be analytic in!0 (Eq. (7.11», let x EO (0,00), let G",
be defined by

and let

and

Git) = F(t)/(t - x)

N(G", , qr) = lim f I G,.(c + iy)! dy < 00
c->O+ R

(7.20)

(7.21)

Then

." (2J I F(Reie)[ dB -+ 0
-'iT/2

as R -+ 00. (7.22)

(7.23)

8. RATE OF CONVERGENCE AS A FUNCTION OF THE NUMBER OF POINTS

In the application of the formulas derived in the provious sections, it is
worthwhile to know the "price" one has to pay to achieve a certain accuracy
and also the rate of convergence, in terms of the number of function
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evaluations that are required. We shall obtain such estimates, and thus
complete the description of the class of functions for which the derived
approximation formulas are expected to work well. The technique we use is
that used in a particular case in [14]. Throughout this section, Cj , 0, and ')(
are positive constants, N is a positive integer, and Clx) is a positive function
of x, which is bounded on the open interval under consideration, but which
may become unbounded at the end points of the interval.

Let us first consider the approximation over (- CO, 0'J).

THEOREM 8.1. Let f E BdP, P = 1 or 2, d > 0 and let

(8.1)

on [-co, co].

(a) Taking h = (77d/(Dl.N»1/2, yields

I N [ X - kh ]'if(x) -I f(kh) sinc . h I :(; C1(N/rx)1/2 e-(",bbn" /o

k~-N

and

: P~~. f f(t). dt - 77i I. f(kh)(x _ kli) sinc2 [ x -:- kh ] I
I .. I R t - x 2h l,~-N n ,

jor all x E [- co, co], and iffE Bi, then

for ali x E [-77/11, 77/h].

(b) Taking h = (277d/(rxN»1/2 andfEBl, we get

I r f(x) dx - h I f(kh) I :(; CJe-<Z..ao.Njl/",
oR k~-N I

l'ihile iffE BdP, P = 1 or 2, then for all x E [- co, I::fJ],

(8.2)

(8.3)

(8.4)

(8.5)

I p,~, r /U). dt _ ~ NIX] f(x + kh + !t/2)
I 771 ° R· - .\ 7Tl k~-N-[:r] k + 1/2

where [x] denotes the greatest integer :(; x.
(8.6)
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Proof. The proofs of each of the above results are similar, and we there­
fore restrict ourselves to proving one case only, namely, the case of (8.2).
The relation (8.5) was obtained previously in [14].

Iffsatisfies the conditions of Theorem 8.1(a), then by Theorem 3.2,

I N IIf(x) - I, f(kh) sinc((x - kh)/h]
k~-N

00

~ C1'e-Trdlh + I {I f(kh)! + [f( -kh)l}
k~N+1

00

~ C1'e-Trd /1I + 2C1 I e-akh
k~N+1

= C1'e-Trd III + 2C1(e-"CN+l)/l/(1 - e-ah»

~ C1'e-Trdlh + (2C1/ rxh) r"N/I, (8.7)

where C1' is a constant, and where we have used the inequality rxh ~ e"" - 1.
Taking h = (7Td/(rxN))l/2 on the extreme right of (8.7) yields (8.2).

Let us next record estimates analogous to those of Theorem 8.1 for
approximations over (-1, 1) and over (0, CX).

THEOREM 8.2. (a) Let F satisfy the conditions of Corollal)'" 7.2, and on
[-1, 1], let IF(x) [ ~ C1(1 - x2)"'. Then, taking h = 7T/(2rxN)1/2, <p(x) =
10g[(1 + x)/(1 - x)], yields

(-1, 1), let

IF(x) - "~N F(tanh(kh/2» sine (<P(X);; kh)1 ~ C1(N/rx)1/2e-Tr(aN/2)lie

(8.8)
for all x E [-1, 1].

(b) Let F satisfy conditions of Corollary 7.1, and on
[F(x)1 ~ C2(1 - X 2)"-1. Then taking h = 7T/(rxNyI2,

(8.10)

I
1 N 2 "h "II. 1 I

f F( -) d I" e F( e -) ,-lC -TrC"Nllie (89)
-1 x X - 1 "~N (1 + ekh)2 ekh + 1 ~ a 2e ..

(c) Let F satisfy the conditions of Corollary 7.3, and on (-1, 1), let
I F(x) 1 ~ C3(1 - x2)a-l. Then by taking h = 7T/(cxN)1/2, X" = tanh(kh/2 + h/4),
we get

I P'~'fl F(t).dt __~ I l--=-x,,2 F(x+x~)1
m -1 t - X 2m k~-N Xk(l I XXk ) 1 + xx],;,

~ a-1C3(x) e-Tr(frNjll2,

forallxE(-I,I).
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THEOREM 8.3. (a) Let F satisfy the conditions of Corollary 7.5, and on
(0, CfJ), let I F(x)i ~ C1x"'j(1 + x2)"'. Then, by taking h = Trj(2a:N)1/2, we get

IF(x) - ktJ\,- F(ekh) sine [ log \- kh ] I ~ C1(Njcx)1/2 rrrbN!2)'/2 (8.11)

for all x E [0, if.)].

(b) Let F satisfy the conditions of Corollary (7.4), and on (0, :JO), let
: F(x) [ ~ C2x"'-lj(1 + x 2)"-. Then, by taking h = 7fj(rxN)1/2, we get

(8.12)

(e) Let F satisfy the conditions of Corollary 7.6, and on (0, CfJ), let
i F(x) [ ~ C3x u.-1j(l + X2)0.-1/2. Then, by taking h = Trj(ouV)1/2

(8.13)

for all x E (0, :JOy,
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